8k小说 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!
8k小说 >  离语 >   第348章 往前

节点与网络中其他节点的交互都是通过其邻居节点来 进行的,因此节点的邻居越多,意味着该节点能够 向外传递的信息越多,从网络外部接受信息也越容易。 有向网络中,又可以定义出度中心度、入度中心度。

社区发现是根据网络中的边的连接模式,把网络顶点划分为群组。将网络顶点划分为群组后最常见的属性是,同一群组内部的顶点之间紧密连 接,而不同群组之间只有少数边连接。社团发现的目的是就要找到网络内部不同群组之间的自然分割线。简而言之,它是一个把网络自然划分为顶点群组的问题,从而使得群组内有 许多边,而群组之间几乎没有边。然而,“许多”和“几乎没有”到底是多少, 这个问题值得商榷,为此提出了多种不同的定义,从而产生了不同的社团发 现算法8基于层次聚类的算法。

第一阶段:称为modularity optimization,主要是将每个节点划 分到与其邻接的节点所在的社区中,以使得模块度的 值不断变大; 第二阶段:称为munity Aggregation,主要是将第一步划分 出来的社区聚合成为一个点,即根据上一步生成的社 区结构重新构造网络。重复以上的过程,直到网络中 的结构不再改变为止。步骤:1.初始化,将每个点划分在不同的社区中; 2.对每个节点,将每个点尝试划分到与其邻接的点所在的社区中,计算此时 的模块度,判断划分前后的模块度的差值Δq是否为正数,若为正数, 则接受本次的划分,若不为正数,则放弃本次的划分; 3.重复以上的过程,直到不能再增大模块度为止; 4.构造新图,新图中的每个点代表的是步骤3中划出来的每个社区,继续执 行步骤2和步骤3,直到社区的结构不再改变为止。 !在2中计算节点的顺序对模块度的计算是没有影响的,而是对计算时间有影响。

数据缺失的原因数据采集过程可能会造成数据缺失;数据通过网络等渠道进行传输时也可能出现数据丢失或出错,从而造成 数据缺失;在数据整合过程中也可能引入缺失值删除法删除法通过删除包含缺失值的数据,来得到一个完整的数据子集. 数据的 删除既可以从样本的角度进行,也可以从特征的角度进行。 删除特征:当某个特征缺失值较多,且该特征对数据分析的目标影响 不大时, 可以将该特征删除 删除样本:删除存在数据缺失的样本。 该方法适合某些样本有多个特征存在缺失值,且存在缺失值的样本占 整个数据集样本数量的比例不高的情形 缺点:它以减少数据来换取信息的完整,丢失了大量隐藏在这些被删除数据 中的信息;在一些实际场景下数据的采集成本高且缺失值无法避免,删除法可 能会造成大量的资源浪费均值填补计算该特征中非缺失值的平均值(数值型特征)或众数(非数值型特 征),然后使用平均值或众数来代替缺失值缺点一:均值填补法会使得数据过分集中在平均值或众数上,导致特征 的方差被低估 缺点二:由于完全忽略特征之间的相关性,均值填补法会大大弱化特征 之间的相关性随机填补随机填补是在均值填补的基础上加上随机项,通过增加缺失值的随机性 来改善缺失值分布过于集中的缺陷。

等距离散化(Equal-width discretization):将数据划分为等宽间隔的区间,这种方法需要先确定区间的个数n,再根据最小值min和最大值max计算出每个区间的间隔长度(max-min)\/n,相邻两个区间的宽度都是相同的。等频率离散化(Equal-Frequency discretization):将数据划分为相同的数量级别,每个区间包含的记录数相等。这种方法首先将数据按照大小排序,然后将排序后的数据分成n等份,每份个数为数据总数\/n,在每个区间的边界处划分数据。基于聚类的离散化:将数据分成若干个簇,簇内的数据相似度高,簇间数据相似度低。具体实现时可以使用聚类算法如k-means、dbScAN等。自适应离散化:通过迭代的方式,不断根据数据的特性调整区间的边界,以达到最优的离散化效果。下面分别以等距离散化、等频率离散化、基于聚类的离散化和自适应离散化为例子,分别列出具体的例题:等距离散化假设我们有一个包含1000个学生身高数据的数据集,我们想将身高离散化成10个等宽的区间,以下是离散化方法:计算身高的最小值和最大值,假设最小值为140cm,最大值为200cm。计算每个区间的宽度,假设共10个区间,每个区间的宽度为(200-140)\/10 = 6cm。根据每个学生的身高,将其分入相应的区间。等频率离散化假设我们有一个包含200家公司的财务数据的数据集,我们想将每个公司的营业收入离散化成5个等频率的区间,以下是离散化方法:将所有公司的营业收入升序排序。计算每个区间的数据数量,在本例中,因为共有200个公司,所以每个区间包含40个公司。找到每个区间的边界,比如第一个区间的最小值和第二个区间的最大值,这两个值之间的所有公司的营业收入都属于第一个区间。

8k小说推荐阅读:四合院:穿成何雨柱,开局就搬家穿越九零:卖辣条当厂长,创业忙四合院:夫债妻偿,淮茹心态崩了离婚后,我上离婚综艺被疯抢,前妻跪求复合重生后,我在恋综嗑cp救命,厌世大佬穿成农家小福女了妖族女帝是九尾狐,那我更喜欢了奥特:终焉的续章快穿之天真小妖精叫君欲罢不能我在末世开鱼塘师父,我们去打房子怪吧离婚后摊牌不装了七零之吃不完,肉根本吃不完权谋天下之甄嬛穿越戚夫人军婚:乔总滚去七零年代结婚了!重生之王妃太嚣张鉴宝鬼瞳:开局捡漏成首富十日终焉疯,疯,疯,整个大陆都疯颠我的上司是个日本人打团请优先保护法师灰太狼,你的天气魔方好香啊!农家福宝养大佬,坐拥天下想躺平黏人军官总是想亲亲,不要啊!异兽迷城四合院,融合万物,耕耘四九城女尊兽世,大猫娶夫养崽种田日常癫文炮灰女配手撕了剧本清冷O说真话后,顶A掐住他细腰高校里最恐怖的班级一念化仙魔深夜禁忌手记我在萌王当帝君四合院:还想坑我?挨个报复!斩男穿越后我拯救女主,脚踹渣男男主查出绝症当天,渣夫在给白月光过生日娘娘,你也不想皇上知道吧觉醒空间,废材大小姐气运逆天盗墓:开局炼化怒晴鸡快穿双强钓系美人又撩又软小马宝莉:玫瑰从未凋零我成了怪物们的母亲我问佛佛问我世家娇娇女,竹马总裁跪着宠九叔:八岁道童,推演道法修仙偏执爱恋诸天之全能系统次元行者:从火影到无限生还游戏
8k小说搜藏榜:快穿双强钓系美人又撩又软小马宝莉:玫瑰从未凋零我成了怪物们的母亲我问佛佛问我世家娇娇女,竹马总裁跪着宠九叔:八岁道童,推演道法修仙偏执爱恋诸天之全能系统次元行者:从火影到无限生还游戏闪开,马甲大佬拯救那个病娇大佬下山后,被病娇霸总缠上了灵气复苏:我建立了修仙家族迷案追踪之追凶狂飙:陈书婷A爆京海明知此有鬼,偏向鬼地寻边缘【刑侦】仙路灵源重生救赎野痞阴鸷少年是恋爱脑为白金龙王献上美好世界漂亮后妈,甜翻全家斗罗:被迫内卷后我吊打比比东开局和魔魂抢身体斗罗:千仞雪的伐神之路港片:港岛大佬灵幻大陆:暗影崛起诡天,葬道,仙人墓谁惯你啊!娘娘她一心只想退婚穿到新婚夜,团宠太子妃一胎多宝精灵:偷师学艺成为最强班基拉斯句句不轻易救了鲛人后,他黏着我要亲亲凹凸世界:我的马甲全靠你们脑补殿下臣青春是难以升起的太阳惊世女将:我的空间藏雄兵狠狠爱,夜王的替宠傲妃穿越盗墓之这个世界有点颠开局流放:穿成太子的锦鲤小娇妻快穿:女配逆袭计狗官到青天:我有系统我怕谁高调嫁傻王,重生三小姐杀疯了盗墓:你们真的不是npc吗?修仙加模拟,飞升没道理死神:为战而生精灵:去吧我的鲲鲲!斩神:共生体始祖重生之青墨幽韵:素锦华年觅初银色玫瑰典藏你抄家,我搬空国库,比比谁更狠
8k小说最新小说:择膏粱综武:别人练武我修仙铠甲:系统你让我搞直播恋爱返现,泡妞就能爆金币!古宅秘事一共四卷综影视:温辞全宗戒备小师妹她又疯啦秋引月华新异世风华录熵境重生92:种蘑菇狂赚百万,白眼狼亲戚急了黑洞之恋:异世界的守护者惊悚:玩家把BOSS撩成恋爱脑了医修与冷艳女尊我重生之无敌天尊野雀港综:和联胜战神,开局邓伯横死妃情灵异过往综影视,穿越一次五百万无尽灰夜去请家仙,却给女鬼下婚书宫阙弦音第二部恋恋时光簿四合院:我把女主都培养成了大佬睁眼新婚夜!换个丈夫,幸福一生糟了!李家穿来两个大力士仙途楚歌捡到三岁小丧尸,流放路上有肉吃悲花鸣烟雨中林悦柯雪修仙传龙珠超之仙人模式五灵根的逆袭丫鬟小桃乱世逃荒记怪诞粘液王妃,你逃不出我的手掌心七零大院:离婚后嫁绝嗣京少多胎死遁五年,被初恋陛下抓回来穿书七零,闺蜜每天给我送物资!星途闪耀之天后进化论修的剑仙者,亦可震九州!斩神:我,戏神代理人,好戏开场奉天承孕:帝王抛朱砂痣后沦陷了心向何方情所归抽龙筋?抽条裤带意思一下得了!都市穿越之强者为尊癫!糊咖竟被影帝骗回家亲懵了细胞永生:时空修真录心声被偷听,她打烂绿茶女主的脸