8k小说 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!
8k小说 >  离语 >   第328章 熬

1.3.2 研究方法

本文以有关电力行业 LcA 的近十年的英文文献为研究对象,并根据每篇文章的元数据构建数据

库。进行文档分割,将文件分割为更小的部分或章节,分区后使其更容易分类和提取文本,将文档

元素列表存储并跟踪从文档中提取的各种元数据,将文本元素分割为适合模型注意力窗口的大小,

构建向量数据库,方便大模型调用。利用 RAG(检索增强生成)模型,帮助大语言模型知晓具有电

力 LcA 领域专业性和时效性的知识,包括最新的新闻、公式、数据等内容,增强大模型回答关于电

力行业 LcA 领域专业性问题与时效性问题的能力,主要用到的研究方法如下。

(1)文献资料法。通过阅读大量国内外研究检索增强生成的文章,确定将 RAG 技术作为提升

大语言模型回答电力行业 LcA 领域问题专业性与时效性问题的解决方法。文献调研显示,聚焦于此

领域的大模型是一个研究空白,将电力行业 LcA 的大模型应用于企业层面的分析,能够响应了重大

战略。该方法能够提升科研眼界、开阔研究思路、丰富研究角度。

(2)实验法。本文使用爬虫程序抓取各顶级期刊官网上近十年的文章,并通过元数据处理方

法,构建文章元数据的数据库。

(3)实证分析法。本文通过大量实际数据,来验证大模型调用电力行业 LcA 领域向量数据库

回答该领域专业性问题和时效性问题的有效性。

1.3.3 系统设计

系统设计三个模块,整体设计如图 1.4 所示,分别是数据处理模块、专业领域知识库构建模块

以及 chatbot 构建模块。数据处理模块主要包括对电力 LcA 这个特定领域的英文文献进行选择和初

步处理,而后将有关数据全部转化成结构化数据。知识库构建模块主要是将数据向量化并构建向量

知识库。chatbot 构建分为功能部分和前端部分,功能包括 openAI 基座的调用、知识库检索、在

线检索;前端部分为 web 可视化以及 UI 设计。

1.4 本章小结

第一章作为本论文的引言部分,主要围绕研究背景、研究目的与意义、研究内容与方法以及系

统设计进行了全面的阐述。首先,本章通过详细阐述当前大模型技术在内容解析领域的背景,指出

了电力行业生命周期评价的重要性,并强调了研究流程和研究方法。在这一基础上,本章进一步明

确了项目系统功能设计。综上所述,本章作为论文的引言部分,为整个研究提供了清晰的研究背

景、目的、意义、内容及方法概述,为后续章节的展开奠定了坚实的基础。

2.1 大语言模型

chatGpt 是由 openAI 发布的一种大语言模型,能够以问答的形式完成各类任务,包括接受文

字输入,理解自然语言,理解响应并模拟人类对话形式进行输出。再各个自然语言处理子任务具有

优异的表现。相比其他大语言模型拥有更丰富的知识,涵盖自然、社会科学、人文历史等多个领

域。chatGpt 在 Gpt3.5 的基础上引入了 RLhF(reinforcement learning from human feedback)

技术,通过将人类的日常对话的语言习惯嵌入模型,并引入价值偏好,使得模型的输出满足人类的

意图。微调过程分为预训练、监督微调、设计奖励模型和反馈优化。桑基韬等人根据 chatGpt 的对

话对象和定位将其应用分为四个层次:数据生成器、知识挖掘器、模型调度器和人机交互界面。在

多模态领域,Visual chatGpt、mm-ReAct 和 huggingGpt 让视觉模型与 chatGpt 协同工作来完成视

觉和语音任务。

除此以外,许多类 chatGpt 的大模型也同样在自然语言处理方面展示出来了较好的效果。

LLamA 是应该从 7billion 到 65billion 参数的语言模型,不需要求助于专有的数据集。清华大学

提出了一种基于自回归填充的通用语言模型 GLm 在整体基于 transformer 的基础上作出改动,在一

些任务的表现上优于 Gpt3-175b。

大语言模型,例如 Gpt 系列、LLama 系列、Gemini 系列等,在自然语言处理方面取得了显着的

成功,展示了超强的性能,但仍面临诸如幻觉、过时的知识、不可追溯的推理过程等挑战。2020

年,由 Lewis 等人引入的检索增强生成方法,通过整合来自外部数据库的知识,然后再继续回答问

题或生成文本。这个过程不仅为后续阶段提供信息,而且确保响应是基于检测到的证据的,从而显

着提高输出的准确性和相关性。在推理阶段从外部知识库动态检索信息使 RAG 能够解决诸如生成幻

觉等问题。RAG 与 LLm 的集成得到了迅速的应用,提高了自然语言处理任务的性能,并且使得模型

能够更好地利用外部知识和背景信息。

自 2020 年起,全球大语言模型在自然语言处理、计算机视觉、语音识别、推荐系统等领域表

现出卓越技术优势,市场规模持续增长,预计到 2028 年将达到 1095 亿美元。国外大模型产品研发

在 2021 年进入高速发展期,谷歌、openAI、英伟达、微软等公司都推出了自主研发的大模型,截

至 2023 年 7 月底,国外已发布了 138 个大模型。我国大模型发展迅速,与国际前沿保持同步,百

度、腾讯、清华大学、北京航空航天大学等单位都推出了自己的大模型,截至 2023 年七月底,我

国已发布 130 个大模型。

2.2 知识抽取

知识抽取主要分为命名实体识别和关系抽取两方面。命名实体识别(NER)任务,旨在识别与

特定语义实体类型相关联的文本跨度。该任务最早于 1991 年由 Rau 等人提出。随着信息理解、人

工智能等领域的顶级会议对 NER 任务的评测,其定义逐渐细化和完善,并逐渐成为自然语言处理

(NLp)领域的重要组成部分。然而,不同领域对实体类型的定义存在差异,因此 NER 模型的构建

取决于特定领域任务需求,通常涵盖人物信息、地点信息和组织机构信息等。对于英语、法语、西

班牙语等外语文本,通常采用单词作为基本单位,因此基于这些语言的 NER 模型主要关注单词本身

的语义特征和上下文信息。然而,中文语料文本通常由字符构成,需要考虑字符的语义信息和词汇。

特征,同时引入其他表征信息来提升模型性能,如中文分词(cwS)、语义部分标签(poS)等外部

信息,因此构建中文命名实体识别(cNER)模型更为复杂。目前,NER 任务的研究方法主要包括基

于词典和规则的方法、基于机器学习(mL)的方法以及基于深度学习(dL)的方法。

今天为什么讲座要那么长时间。

8k小说推荐阅读:小地方留守妇女的琐事神圣计划?可我是宝可梦训练家啊小凤凰三岁半,指挥毛茸茸成团宠迟来的深情,我不要了!疯了吧!别人重生种田,你重生炸山四合院:穿成何雨柱,开局就搬家穿越九零:卖辣条当厂长,创业忙四合院:夫债妻偿,淮茹心态崩了离婚后,我上离婚综艺被疯抢,前妻跪求复合重生后,我在恋综嗑cp救命,厌世大佬穿成农家小福女了妖族女帝是九尾狐,那我更喜欢了奥特:终焉的续章蝴蝶效应后,开启下一个世界快穿之天真小妖精叫君欲罢不能我在末世开鱼塘师父,我们去打房子怪吧离婚后摊牌不装了七零之吃不完,肉根本吃不完白月光冷又媚,偏执大佬夺她入怀夫人娇媚,要将军哄哄抱抱又亲亲权谋天下之甄嬛穿越戚夫人军婚:乔总滚去七零年代结婚了!重生之王妃太嚣张鉴宝鬼瞳:开局捡漏成首富十日终焉疯,疯,疯,整个大陆都疯颠我的上司是个日本人打团请优先保护法师灰太狼,你的天气魔方好香啊!农家福宝养大佬,坐拥天下想躺平黏人军官总是想亲亲,不要啊!异兽迷城四合院,融合万物,耕耘四九城女尊兽世,大猫娶夫养崽种田日常皇城探事司癫文炮灰女配手撕了剧本狩魔续魂高校里最恐怖的班级全方位幻想一念化仙魔深夜禁忌手记我在萌王当帝君四合院:还想坑我?挨个报复!残王的落跑小撩精斩男穿越后我拯救女主,脚踹渣男男主双穿:都是些啥破开局查出绝症当天,渣夫在给白月光过生日娘娘,你也不想皇上知道吧
8k小说搜藏榜:快穿双强钓系美人又撩又软小马宝莉:玫瑰从未凋零我成了怪物们的母亲我问佛佛问我世家娇娇女,竹马总裁跪着宠九叔:八岁道童,推演道法修仙偏执爱恋诸天之全能系统次元行者:从火影到无限生还游戏闪开,马甲大佬拯救那个病娇大佬下山后,被病娇霸总缠上了灵气复苏:我建立了修仙家族迷案追踪之追凶狂飙:陈书婷A爆京海明知此有鬼,偏向鬼地寻边缘【刑侦】仙路灵源重生救赎野痞阴鸷少年是恋爱脑为白金龙王献上美好世界漂亮后妈,甜翻全家斗罗:被迫内卷后我吊打比比东开局和魔魂抢身体斗罗:千仞雪的伐神之路港片:港岛大佬灵幻大陆:暗影崛起诡天,葬道,仙人墓谁惯你啊!娘娘她一心只想退婚穿到新婚夜,团宠太子妃一胎多宝精灵:偷师学艺成为最强班基拉斯句句不轻易救了鲛人后,他黏着我要亲亲凹凸世界:我的马甲全靠你们脑补殿下臣青春是难以升起的太阳惊世女将:我的空间藏雄兵狠狠爱,夜王的替宠傲妃穿越盗墓之这个世界有点颠开局流放:穿成太子的锦鲤小娇妻快穿:女配逆袭计狗官到青天:我有系统我怕谁高调嫁傻王,重生三小姐杀疯了盗墓:你们真的不是npc吗?修仙加模拟,飞升没道理死神:为战而生精灵:去吧我的鲲鲲!斩神:共生体始祖重生之青墨幽韵:素锦华年觅初银色玫瑰典藏你抄家,我搬空国库,比比谁更狠
8k小说最新小说:原神:身为世界意识升格提瓦特到部队离婚,极品前夫身败名裂我的内娱穿越之旅回到高三,但成为副本Boss未婚夫在风花雪月我忙着修炼成仙穿越到坎公成为勇士仙储八零串场女配太惹火传道达人张道林七零辣妻:恶毒大小姐到甜宠军嫂诱吻蜜糖提灯囚爱,这个疯批大佬有点爽娘娘步步为营,冷戾王爷脑补上位孔雀石与疯犬崩铁:谁让他加入星穹列车的!汴京小食堂星际兽世:她被sss级大佬抢疯啦!灵魂摆渡:我师傅是九叔原神:傲娇小猫被狠狠拿捏了!替长姐洞房后,被侯府大公子强宠了鬼妃归来,残王夜夜被我吸龙气!京师除妖录在诡异怪谈当边缘人协议离婚后,总裁前妻跪求我原谅诱他深陷:钓系美人杀疯了!【HP】罗斯克劳德的亲世代日记傅律师,太太说她不回头了女神异闻录:书与命运的彼方穿越大秦三岁半穿书后,我用美食征服四个反派崽崽四合院之开局就有一个女儿普通人的综影视神雕,李莫愁情定三生重生74:母亲割腕喂血,我靠打猎翻身爱,过时不候痴傻三年,开局撞见妻子出轨!霍总高调官宣,哥哥们肠子都悔青了萌宠兽世:兔姬的万兽朝凰路哀牢山传奇:灵界之战穿越火影陪四代目长大封神:截教双圣,震惊洪荒听懂兽语后,我带毛茸茸为国争光一觉醒来天塌啦!豪门老公破产了换嫁给早死世子,我带崽宠冠京城三岁小县主,京城大佬争着宠!亿万倍系统:从修真大陆崛起荒漠天灾:我有十亿亿吨清水!快乐吃瓜,大臣们纷纷破防了顶级偏爱!太子爷沦陷弯腰热吻TNT之我们要在一起