8k小说 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!
8k小说 >  离语 >   第276章 睡了睡了

要偏向于更为全面的文献数据。生命周期评价的本质是用来评估产品或服务从生产到消费再到废弃的整个过程对环境和社会的影响,它考虑了资源使用、能源消耗、排放物的产生等方面。那么为了提高最后基于电力LcA这个领域搭建的专业模型的准确度,对文献进行精细筛选,选取同时包括流程图,数据,各单元过程投入产出详细数据,数据时间地点落去方法,技术细节的文献,作为最终的数据。将精细筛选后的论文数据,结合unstructed库进行数据处理。进行信息精细化拆解与清洗,使以pdf形式存储的文献数据通过分割,分区,变成便于嵌入模型的结构化数据。对文字进行筛选与清理,图像的内容进行识别,存储图像的解释信息,表格转化为htmL格式。最后统一变成标题加内容的格式。在这里我列举了简单的数据处理流程。首先是对数据进行分割。随后是对文本进行拆分,识别内容是否为文本,如果是,就填进text_list。将表格转化为htmL格式,将图片变为图片解释信息。第二部分是知识库的构建。向量知识库,能将各类数据(如文本、图像、音频等)转化为向量形式进行存储。数据之间的相似性和关联性得以量化,不像平时你存储你的,我存储我的,向量数据库给予了一个统一的标准。也正是因为统一了格式,利用相似度对比,检索更加高效。构建知识库的流程首先是提取分割文本进行向量化的操作。向量化的本质是将离散的符号信息,如词或句子,映射到连续的向量空间中,以便计算机能够处理。向量化将高维数据转化为低维数据,保留了数据的关键特征又降低了数据的复杂度。选择pipecone存储向量数据,它支持查询,插入,删除等一些列操作。选择weaviate作为向量搜索引擎,可以通过主题的分类检索,进行语义搜索、问答提取等等功能。第三部分是chatbot的构建。先前已经构建好了针对电力LcA领域的专业大模型,但是缺少检验模型的手段,即缺少模型优化环节,本项目设置通过chatbot模式,通过与用户进行问答的形式,检验模型是否能调用电力行业LcA领域向量数据库回答该领域专业性问题和时效性问题的有效性。chatbot是模拟人类对话的一种形式,就我们平时能使到的chatgpt就是以chatbot的形式来呈现的,而chatbot在这里的功能实现主要是为了体现检索功能,大致可分为知识库检索功能和在线搜索。那么就产生了三种检索模式。

仅基于大语言模型,连接知识库搜索,和在线搜索。前端部分我采用streamlit来完成,UI设计如图所示。这边是功能按钮,中间是对话框。先前有讲到了,我们来检测针对专业领域的大模型的标准就是检测是否有能力回答专业领域的问题,并针对结果进行优化。这里我向chatbot提出同一个问题。只采用大语言模型,采用知识库与大语言模型结合,和联网搜索与大语言模型结合。三种功能下获得的回答是完全不同的,后面两个检索功能均为大语言模型优化了生成回答的准确性,对大语言模型的专业领域知识做了补充和改善。可以看到普通的大语言模型回答的是最简短的,采用了知识库的回答,将答案细分,扩充,并添加了新的内容,附上参考文献。最后的联网搜索,将答案分为了几类,更加全面,但是每类回答点到即止。最后就是向量知识库进行优化。对于准确率低的查询,分析模型回应错误的原因。如果是由于知识库中缺少相关信息,可以通过添加更多相关文档和数据来增强向量知识库的覆盖范围。用户反馈是对输入的问题和产生的回答进行记录,方便针对性进行调整。反馈可以直接用于指导向量知识库的更新和优化。不断地测试来完善我的专业领域大模型。最后一部分是我本次研究的总结。首先创建了一个能被大语言模型直接调用的专业知识库,在电力LcA这个专业性较高的领域填补了大语言模型的空白。其次是采用RAG技术,将知识库,联网与大语言模型相结合,增强了大语言模型在特定领域的可信度和实用性。最后就是本次研究虽然是针对电力LcA领域,但其背后的构架适用于各个领域,构建了一个完整的体系,可以进行修改,全方面的辅助大语言模型,应用广泛。以下就是我的全部研究内容请各位老师批评指正。

3.3.2 数据预处理

Unstructured 库是一个强大的工具,专为处理非结构化数据设计,具体流程如图 3.7 所示,

如从文本文档、pdF 文件或网页中提取数据。它支持多种数据提取方法,包括正则表达式匹配、自

然语言处理(NLp)技术等。

数据预处理步骤如下:

步骤一:数据清洗

去除杂质:从文本中去除无关的字符,如特殊符号、空白行等。

格式统一:将所有文本统一为相同的编码格式,通常为 UtF-8,以避免编码错误。

语言标准化:统一不同术语的使用,例如将所有\"photovoltaic\"统一替换为\"pV\",确保术语的

一致性。

步骤二:信息提取

关键信息标识:标识文献中的关键信息,如研究方法、主要结论、实验条件等。

数据分类:根据信息类型将数据分类,如作者、出版年份、研究结果等。

步骤三:结构化转换

结构化处理:将信息精细化拆解与清洗,将各种元素进行转换,形成结构化数据形式,拆分成

标题与内容。

分割部分关键代码:

对于其中的每个元素,如果是 positeElement 类型,就提取其中的文本并将其添加到

text_list 中;如果是 table 类型,就将表格的文本表示(可能是 htmL 格式)添加到

text_list 中。

将图 3.8 的提取的数据进行拆分,添加到 text_list 中,输出结果如图 3.11 所示。

非结构化文本数据通常非常稀疏,即包含大量的词汇但每个文档只使用其中的一小部分。而结

构化数据则可以通过合并相似信息来降低数据的稀疏性,这有助于生成更加紧凑和有效的嵌入向

量。

结构化数据可以实现更高效的特征提取。结构化数据通常已经按照特定的模式或结构进行了组

织,这使得我们可以更加高效地从中提取有用的特征(如标题、作者、摘要、关键词等)。这些特

征可以作为后续 Embedding 的输入,帮助生成具有更强区分性和泛化能力的嵌入向量。结构化数据

中的元素(如主题、类别、属性等)通常具有明确的含义,这些含义可以在 Embedding 过程中被保

留下来。因此,基于结构化数据的嵌入向量往往具有更强的解释性,有助于我们更好地理解模型的

预测结果和内部机制。

8k小说推荐阅读:小地方留守妇女的琐事神圣计划?可我是宝可梦训练家啊小凤凰三岁半,指挥毛茸茸成团宠迟来的深情,我不要了!疯了吧!别人重生种田,你重生炸山四合院:穿成何雨柱,开局就搬家穿越九零:卖辣条当厂长,创业忙四合院:夫债妻偿,淮茹心态崩了离婚后,我上离婚综艺被疯抢,前妻跪求复合重生后,我在恋综嗑cp救命,厌世大佬穿成农家小福女了妖族女帝是九尾狐,那我更喜欢了奥特:终焉的续章蝴蝶效应后,开启下一个世界快穿之天真小妖精叫君欲罢不能我在末世开鱼塘师父,我们去打房子怪吧离婚后摊牌不装了七零之吃不完,肉根本吃不完白月光冷又媚,偏执大佬夺她入怀夫人娇媚,要将军哄哄抱抱又亲亲权谋天下之甄嬛穿越戚夫人军婚:乔总滚去七零年代结婚了!重生之王妃太嚣张鉴宝鬼瞳:开局捡漏成首富十日终焉疯,疯,疯,整个大陆都疯颠我的上司是个日本人打团请优先保护法师灰太狼,你的天气魔方好香啊!农家福宝养大佬,坐拥天下想躺平黏人军官总是想亲亲,不要啊!异兽迷城四合院,融合万物,耕耘四九城女尊兽世,大猫娶夫养崽种田日常皇城探事司癫文炮灰女配手撕了剧本狩魔续魂高校里最恐怖的班级全方位幻想一念化仙魔深夜禁忌手记我在萌王当帝君四合院:还想坑我?挨个报复!残王的落跑小撩精斩男穿越后我拯救女主,脚踹渣男男主双穿:都是些啥破开局查出绝症当天,渣夫在给白月光过生日娘娘,你也不想皇上知道吧
8k小说搜藏榜:快穿双强钓系美人又撩又软小马宝莉:玫瑰从未凋零我成了怪物们的母亲我问佛佛问我世家娇娇女,竹马总裁跪着宠九叔:八岁道童,推演道法修仙偏执爱恋诸天之全能系统次元行者:从火影到无限生还游戏闪开,马甲大佬拯救那个病娇大佬下山后,被病娇霸总缠上了灵气复苏:我建立了修仙家族迷案追踪之追凶狂飙:陈书婷A爆京海明知此有鬼,偏向鬼地寻边缘【刑侦】仙路灵源重生救赎野痞阴鸷少年是恋爱脑为白金龙王献上美好世界漂亮后妈,甜翻全家斗罗:被迫内卷后我吊打比比东开局和魔魂抢身体斗罗:千仞雪的伐神之路港片:港岛大佬灵幻大陆:暗影崛起诡天,葬道,仙人墓谁惯你啊!娘娘她一心只想退婚穿到新婚夜,团宠太子妃一胎多宝精灵:偷师学艺成为最强班基拉斯句句不轻易救了鲛人后,他黏着我要亲亲凹凸世界:我的马甲全靠你们脑补殿下臣青春是难以升起的太阳惊世女将:我的空间藏雄兵狠狠爱,夜王的替宠傲妃穿越盗墓之这个世界有点颠开局流放:穿成太子的锦鲤小娇妻快穿:女配逆袭计狗官到青天:我有系统我怕谁高调嫁傻王,重生三小姐杀疯了盗墓:你们真的不是npc吗?修仙加模拟,飞升没道理死神:为战而生精灵:去吧我的鲲鲲!斩神:共生体始祖重生之青墨幽韵:素锦华年觅初银色玫瑰典藏你抄家,我搬空国库,比比谁更狠
8k小说最新小说:原神:身为世界意识升格提瓦特到部队离婚,极品前夫身败名裂我的内娱穿越之旅回到高三,但成为副本Boss未婚夫在风花雪月我忙着修炼成仙穿越到坎公成为勇士仙储八零串场女配太惹火传道达人张道林七零辣妻:恶毒大小姐到甜宠军嫂诱吻蜜糖提灯囚爱,这个疯批大佬有点爽娘娘步步为营,冷戾王爷脑补上位孔雀石与疯犬崩铁:谁让他加入星穹列车的!汴京小食堂星际兽世:她被sss级大佬抢疯啦!灵魂摆渡:我师傅是九叔原神:傲娇小猫被狠狠拿捏了!替长姐洞房后,被侯府大公子强宠了鬼妃归来,残王夜夜被我吸龙气!京师除妖录在诡异怪谈当边缘人协议离婚后,总裁前妻跪求我原谅诱他深陷:钓系美人杀疯了!【HP】罗斯克劳德的亲世代日记傅律师,太太说她不回头了女神异闻录:书与命运的彼方穿越大秦三岁半穿书后,我用美食征服四个反派崽崽四合院之开局就有一个女儿普通人的综影视神雕,李莫愁情定三生重生74:母亲割腕喂血,我靠打猎翻身爱,过时不候痴傻三年,开局撞见妻子出轨!霍总高调官宣,哥哥们肠子都悔青了萌宠兽世:兔姬的万兽朝凰路哀牢山传奇:灵界之战穿越火影陪四代目长大封神:截教双圣,震惊洪荒听懂兽语后,我带毛茸茸为国争光一觉醒来天塌啦!豪门老公破产了换嫁给早死世子,我带崽宠冠京城三岁小县主,京城大佬争着宠!亿万倍系统:从修真大陆崛起荒漠天灾:我有十亿亿吨清水!快乐吃瓜,大臣们纷纷破防了顶级偏爱!太子爷沦陷弯腰热吻TNT之我们要在一起